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ABSTRACT 

A liquid metal target for a pulsed spallation neutron source was modelled on the computer to 
investigate the effect of the high instantaneous power deposition (60 kJ in 1 ps) on the 
pressure in the liquid and the resulting stress on the container. It was found that for the short 
pulse duration the resulting stress would be likely to exceed the allowable design stress for 
steels of the HT-9 type with low nickel content. Adding a small volume fraction of gas 
bubbles might be a way to suppress almost completely the generation of pressure waves. 

1. Introduction 

Using a molten heavy metal as target material for spallation neutron sources has so far been 
considered mainly for continuous sources like ING [l] and SINQ [2]. The obvious 
advantages are 

a high heat removal capacity by the moving target material 

the absence of cooling water and its related problems of radiolysis and corrosion in the 
target region 

no structural radiation damage in the target material 

high heavy metal density in the interaction region (no dilution by cooling channels) 

volatile or potentially volatile spallation products can be removed “on line” 

a low specific afterheat due to a large target mass, which, together with the fact that the 
liquid can be drained into a dump tank, makes forced cooling during exchange operations 
not necessary. 

In view of these attractive features and of the risk of damage in solid targts in pulsed 
spallation sources of high power level like the 5 MW for the European Spallation Source 
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Project (ESS) [4], the question was investigated whether a liquid target could be used also in 
this case. One of the main differences between a pulsed and a continuous spallation neutron 
source is the very high instantaneous power (100 kJ per pulse for ESS) injected into the 
material during very short times at high repetition rate, (1 j.ts at 50 Hz). About 60% of the 
beam energy are deposited in the target which under these conditions, cannot be 
accommodated by thermal expansion during the pulse and will give rise to pressure waves 
that can result in substantial stress loads on the container wall. Although the material for the 
container wall can - within limits - be chosen for high mechanical stability, it is of prime 
importance to keep the load in a safe regime for long time operation even under the effect of 
radiation damage. In the present paper we report on preliminary calculations to examine these 
problems. 

2. The physics model 

Under the assumption that the target material will be either Pb, Pb-Bi eutectic or Hg in the 
liquid state we exclude the effect of phase transitions and related latent heat effects. All 
deposited energy will therefore be converted into heat, leading to thermal expansion. In view 
of the short duration of the energy pulse, this expansion is strongly hindered by the 
surrounding material and a force will be excerted that causes a pressure wave to travel 
through the material. Since this means acceleration and motion of material, it will have an 
immediate feedback effect on the pressure which must be taken into account through a 
coupling loop. Fig. 1 shows the conceptual basis of the calculations: 

dp I fdt . P 

-5 
c 

Effect of 
elastic 
properties * 
(walls) 

l w - fdt c- $ 

\ Velocity Acceleration 

for all volul;;e elements 

Figure 1: Simplified scheme of the calculational procedure to examine pressure waves in a 
liquid metal target. Accelerations and displacements are only allowed to occur to the extent 
permitted by the elastic properties of the system. Otherwiese they are treated as “virtual” and 
used to calculate the change in local pressure. 

The pulse-like deposition of a large amount of energy in any volume element of the target is 
short enough, so that no change in volume is possible (isochoric case). It gives rise to a 
subsequent (hindered) expansion of the material whose time constant can be varied. The 
result is an increase of pressure as a function of time. This pressure is the cause of 
acceleration of the surrounding material, whose velocity is again obtained via an integration 
over time. The motion of this material will reduce the local pressure, giving rise to feedback 
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between the volume elemtens in the target. The pressure wave will thus travel through the 
material, mediated by the finite compressibility. It will pass through the non-heated zones of 
the target and reach the wall where it causes mechanical stress. Due to the elastic properties 
of the wall it will be reflected back into the material, giving rise to superposition. In a solid 
this might occasionally result in negative pressures (tensile stress) in the material. In the 
liquid we assume voiding to occour and hence we limit the minimum pressure to a small 
negative value or to zero (optional). At present we do not account for the latent heat of 
vaporization required to fill the void with metal vapour, nor do we account for any short term 
underswing of the pressure due to cohesive forces in the liquid, delaying the void formation. 
Both effects could be incorporated into the model for at a later stage if considered important 
and if sufficient information is available. Neglecting them keeps us on the safe side in terms 
of stress on the walls. 

3. The geometrical model 

The geometrical model is three dimensional but at present only elliptical target cross sections 
have been implemented (including, of course, the circular cross section as a special case). The 
target is taken long enough for its downstream end (parallel to the proton beam) not to affect 
the pressure during the time intervals considered (a few hundred ps). For the upstream end 
(beam entry point) one of three options can be selected 

- an open surface 
- a rigid flat cover 
- an elastically flexible domed cover 

In the case of an open surface, target material is allowed to leave the surface under the effect 
of the following forces 

pressure inside the liquid 

gravity 
inertia 
internal friction caused by viscosity. 

The liquid volume, as well as the surrounding walls are subdivided into triply indexed 
elements limited by surfaces in the following way (Fig. 2). 

- planes perpendicular to the beam axis (index I) 
- cylinders concentric to the beam axis (index K) 
- planes containing the beam axis (index L) 

The volume elements can be defined as belonging to the liquid or as representing 
material. In the latter case tensile forces and shear stress are allowed to occur. 

4. The mathematical model 

solid 

All dynamical processes are described by algebraic relations and differential equations. The 
latter ones are solved by numerical integration. The pressure resulting in a medium is given 
by the general relation 
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Beam Energy 

Container 

Figure 2: Scheme for the subdivision of the target volume into elements by surfaces and 
assignment of the indices I, K, L. 

During the very short energy pulses no volume change can occur and hence only the second 
term in equation (1) is important (isochoric case). Following the energy deposition the 
resulting pressure will spread adiabatically in the medium and the first term in eqn. (1) 
becomes dominant because in liquid and solid media the adiabatic compression occurs 
practically without any change in energy, since cP and c, the specific heat capacities at 
constant pressure and at constant volume are almost equal. The temperature rise caused by 
depositing an amount of energy E, in a volume of mass m is then given by 

J% AT=- (2) 
m.c, 

In our practical calculations the small change in temperature during the adiabatic expansion is 
in fact taken into account as shown in the appendix Al. where a derivation of the formulae 
used is given. 

The result is a pressure increase Ap given by 

A+~.!-+~.~ 
Y 0 0 

where K is the isothermal modulus of volume elasticity, 

(3) 

(3a) 

and k shall be called the “adiabatic modulus of volume elasticity”. Using this quantity 
accounts for the change in temperature during adiabatic expansion. This allows us to drop the 
condition of short pulses and use our system of equations also for longer pulses (e.g. a 500 ps 
pulse of a long pulse sauce). 

The force excerted on any given volume element is the result of three components 
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l the difference in pressure on 
l friction caused by viscosity 
l gravity. 

both sides 

The net force on any volume elemtent causes acceleration of the material which, through 
integration over time, finally yields a theoretical net displacement of the material. For each 
volume element the velocities and net displacements are calculated for the six faces of the 
element (Fig. 3). This allows to calculate a fictitious (“virtual”) change in volume 

AV= f: Si - Bj 
i=l 

(4) 

with S being the area of the surface under consideration and B the displacement. We call the 
volume change “virtual” because it does not occur in reality but is the cause of a change in 
pressure as shown in Fig. 1. 

WL (I, K, L) 

Figure 3: Velocities and displacements contributing to the “virtual” change in volume of a 
target element. 

In this way the spreading of the pressure is followed through the target material as a function 
of time until it reaches the container wall. Due to the tensile strength of the wall, the pressure 
gives rise to stress in the wall material which is the sum of the direct pressure load on the 
surface element under consideration and the influence of the neighbouring elements, where 
the pressure wave may arrive at a different time. The toal stress is therefore a combination of 
pure tensile and stress (Fig. 4). The bending stress is calculated in analogy to the case of a 
beam with two fured ends under lateral displacement. 

The options mentioned for the beam entry face are treated in the following way: 

l for the free surface the pressure above the liquid is set to zero and the equations of motion 
are used without restrictions 

l for the rigid flat cover no displacements, velocities or accelerations are allowed at the 
boundary surface, i.e. the boundary surface acts as a “mirror”. 
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l the domed flexible cover is treated in analogy to the elastic cylinder wall accounting for 
the double curvature in this case. 

I mea 

compressive 

Figure 4: Modelling of different stress contributions in the target container wall. 

5. The effect of the elastic modulus of the liquid 

According to eqn. (3) the pressure rise in the liquid is directly proportional to its elastic 

modulus I& resp. K,. Accounting for the fact that gases are orders of magnitude more 
compressible than solids or liquids, we assume that a small amount of gas bubbles can be 
continuously added to the region where the interaction between the target material and the 
proton beam takes place. 

Any change in volume of the mixture AVm will then be the sum of the change in volume of 
the gas AVg and of the liquid AV,: 

AVm = AVp+ AV, (5) 

According to eqn. (3) the second term is given by 

AV, = -!$Ap (6) 

In order to determine the first term of eqn. (5), we need to know whether the compression is 
isothermal or adiabatic. This depends on the rate of heat exchange between the metal and the 
gas, which should be high due to the smallness of the bubbles and their large surface. On the 
other hand the compression is very fast which would favour the adiabatic case. The general 
case is a polytropic compression 

P . v&I” = PO . v*yo with l<nlK (7) 

where n=l holds for the isothermal and n = K holds for the adiabatic case. 
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Calling the volume fraction of gas bubbles E with 

it is easy to show (see appendix A2) that the modulus of elasticity for the mixture is given by 

{ 

1 1 !. n+l I 
-1 

Km= -+-- K 

I 

n p,“*E*p-” (9) 

For the case of mercury (K, = 2.77 - 10” 3 ) this quantity is shown in Fig. 5a and b as a 

function of pressure for various values of E and for n=l and n=1.63 (isothermal and adiabatic 
compression respectively). It is obvious that in the adiabatic case K and, as a consequence of 
the feedback also p, are much smaller than in the isothermal case, but the effect at moderate 
pressure levels is enormous even for very small values of E, of the order of a few percent. We 
can therefore anticipate that, due to the high compressibility of the gas bubbles, there will be 
almost no overall pressure increase in the liquid as long as the total volume of the gas bubbles 
is sufficient to absorb the total volume increase in the liquid at moderate pressure increase in 
the gas. 
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Figure 5: Dependence of the modulus of volume compressibility K,,, of a mixtrue of liquid 
and gas on the pressure for different volume fractions of gas, E. (a) iothermal case (b) 
adiabatic case. 

For very small volume fractions of E, on the other hand there may exist a positive feedback in 
pressure development because, while energy is initially stored in the compression of the 
bubbles, K, increases rapidly towards the value of I<I and the pressure wave will spread as in 
the bubble-free case. However, as soon as the pressure starts dropping the energy stored in the 
bubbles will be released, causing the pressure to drop more slowly and eventually to give rise 
to interference maxima which may exceed the values obtained in the bubble-free case. Of 
course, these effects are strongly geometry dependent, too, and detailed calculations are 
needed for each s&ion. As a general rule it may be stated however that, if gas bubbles are 
used to suppress the pressure waves, a volume concentration slightly above the “critical” one 
is much safer than one below. More details are given in the following chapter. 



6. Some examples of results obtained so far 

Our main interest in the current context are the stress levels induced in the container walls as 
a function of the various parameters and the target geometry. For the time being, the 
following effects are completely neglected 

- static or quasi-static stress caused by temperature gradients in the walls 

- static stress caused by hydraulic pressure 

- stress caused by flow reversal at the beam entry window 

- etc. 

For the energy deposition in the liquid we assumed that about 60% of the beam energy are 
deposited in the target material, i.e. 3 MW time average or Pp = 60 kJ per pulse for the ESS 
case. The spatial distribution is taken as essentially exponential along the beam axis and as 
parabolic in radial direction with a base width of 2r,=lO cm. For each volume element the 
heating during the pulse is then given by 

Rr,Z)=Cit -V, 1-ex ( ,(_,)).(erp(-L.r)).[~-[~~j (10) 

where Ve is the volume of the element under consideration, A, is a buildup length taken as 6.5 
cm, z, is an extrapolation length (1.77 cm), Z is the macroscopic cross section of mercury for 
1.3 GeV protons (0.07 cm-‘) and ci, is a quantity determined by iteration under the condition 
that the sum over all volume elements must give the value Pp. The numbers chosen are based 
on a compilation generated for the German SNQ project [3 1. Fig. 6 shows the axial 
dependence of the power deposition integrated over the beam diameter. 

0 10 20 30 40 50 60 70 80 

Depth z, cm 

Figure 6: Axial dependence of the power deposition (integral over the beam diameter) used as 
input for the heating calculations. 

The aspect ratio and area of the ellipse representing the target cross section 
examine the effect of travelling times of the pressure waves from their origin 
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Immediate effects are, of course, obtained at the target head where heating occurs directly 
behind the walls. For all other positions along the container wall the stresses are rather 
complicated functions of position and time due to the osciallatory behaviour of the system. 

In Fig. 7 we show the stress as a function of time obtained for an elliptic target cross section 
with an area of 707 cm’ and with an aspect ratio of 3:2 at the points A and B (plane of 
maximum stress) for the situation of the target with a rigid cover. Clearly one can see the 
effects of travelling time and of local curvature of the wall: 

Stresses (elliptic cross-section: AA=367, BB=244 [mm]) 
pulse = 1 [vs] 

3.2E+8 

2.4E+8 

z 1.6E+8 

3 
$ 8.OE+7 

O.OE+O 

-8.OE+7 

0 50 100 150 200 250 300 
time [I.I.s] 

Figure 7: Calculated stress as a function of time for the two positions A and B at the level of 
maximum stress along the cylinder walls of 8 mm thickness for a 1 ps long power pulse of 60 
kJ total engery. 

While the pressure wave reaches point B (b=122 mm) about 50 ps after the pulse, the 
pressure rise is rather moderate due to the softness of the wall at this position (large radius of 
curvature). The farer point A is reached after 80 p but the stresses rises much more rapid due 
to the stronger curvature of the wall at this position. The maximum stress is reached after 
about 150 ps at a level of 145 Mpa. Some oscillatory behaviour is clearly seen in both cases. 
The maximum level reached is close to the recommended design stress for HT-g-type steels 
(Fig. 8). Also, it must be noted that this is only the dynamic contribution from the pressure 
waves in the target and a wall of 8 mm thickness was assumed. This is probably too thick to 
be cooled. Hence a reduction of the pressure wave contribution is highly desireable. 

As an illustrative example we show in Fig. 9 the same geometry but for the case of a 250 ~LS 
long proton pulse of the same total energy content. While the curves are topologically similar 
to those of Fig. 7, the stress level reached is only 10% of the former, mainly dominated by the 
height of the rising edge of the pulse. This shows that for a long pulse neutron source stress 
waves in the target should not be a problem. 
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Figure 8: Allowable design stress in HT-g-type steel as a function of temperature (after [5]). 
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Figure 9: Calculated stress as a function of time for the same situation as Fig. 8, but with an 
assumed pulse duration of 250 vs. 

For the case of a circular target cross section, somewhat higher maximum stress levels are 
obtained but the difference is not large. Similarly, allowing a fret surface or using a domed 
cover at the point of beam entry has a noticeable but not really significant effect on the 
maximum stress along the wall. 

For the case of the open surface, liquid is found to be expelled through the surface Figs. 10a 
and b give the velocity profile and the surface contour of the liquid at 300 I.LS after the beam 
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hits the target. The maximum velocity obtained can be seen to be of the order of 10 m/s. The 
profile ressembles very closely to that observed for underwater explosions! 

ca.2.5 mm, 
time= 300 vs 

i 

Figure 10: Calculated expulsion of the liquid through the open surface of beam entry for a 1 
ps pulse of 60 kI. (a) Velocity profile at 300 ILS after the pulse (b) Surface contour at 300 j.ts 
after the pulse. 

For the case of an elastic dome-shaped cover the stress distribution along a line running from 
the apex of the cover down the dome and along the cylindrical wall is shown in Fig. 11 for 
two different times after the pulse. It can be seen that there results a rather complicated 
vibrational behaviour which is caused by the elastic properties of the system on the one hand 
and the different travel times of the pressure waves to the various points along this line on the 
other. The geometry used here was a cylindrical cross section and a wall thickness reduced to 
6 cm which explaines the somewhat higher peak at 150 its compared to Fig. 8. 
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Figure 11: Calculated stress distribution along a line running from the apex of the dome- 
shaped beam entry window along the dome and down the cylindrical wall (6 mm thick), 
shown for two different times after the pulse. 
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Figure 12: Calculated stress distribution for the same situation as Fig. 11, but with a volume 
concentration of 3% He in the liquid. 

The most significant effect is found after adding a small volume fraction of bubbles to the 
liquid. Fig. 12 shows the same situation as Fig. 11, but this time 3% of the volume were 
assumed to be gas bubbles. The maximum stress on the wall has decreased by two orders of 
magnitude, to an almost insignificant level. It is also obvious that the system reacts much 
softer with the stress rising during a much longer time after the pulse. As discussed before, 
this effect depends rather critically on a minimum fraction of bubbles. In the regime where 
the volume of the bubbles is not enough to accommodate the full expansion of the liquid we 
find some puzzling effects which we still need to investigate in more detail. 

7. Conclusions 

While our results are still of preliminary nature in particular as far as absolute numbers are 
concerned, the program system we have developed clearly allows us to judge the effect of 
parameter variations such as the pulse duration and the beam geometry in the system. In 
particular the opportunity of injecting gas bubbles in the beam interaction region might, if a 
technical solution can be found, provide a means to supress nearly totally the effect of 
pressure waves. This will make the heat deposition in the window itself, which has so far 
been neglected completely in our calculations, the main source of stress. From our results we 
are confident that a liquid metal should be a viable solution not only for continuous sources 
but also for pulsed sources in the beam power regime of several MW. 
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Appendix 

Al Computing the pressure in the liquid metal 

General 

The pressure being a function of volume V and temperatur T, we have for any differential 
change: 

The modulus of isothermal volume compressibility K is defined as 

and the coefficient of volume expansion aV is 

(Al.l) 

(Al -2) 

(Al .3) 

If the interval of heating of the liquid volume is very short, the material will not be able to 
accomodate the resulting change in volume, i.e. we are dealing with the case of isochoric 
heating (heating at constant volume). After the pulse there is no further heat input and since 
thermal conduction effects are much slower that the velocity of sound we may safely assume 
an adiabatic expansion. 

Isochoric case: 

The change in temperature due to the depostition of an energy AQ into a volume element of 
mass m is 

AT AQ =- 
m- c, 

with c, being the specific heat capacity at constant volumes (J/kg K). 

Using dV = 0 in eqn. (Al. 1) and eqns. (Al .2) and (Al .3) we have 

Adiabatic case: 

(Al -4) 

(Al S) 

Although, in the adiabatic case, the change in pressure is mainly dominated by the first term 
on the right hand side of eqn. (Al.l), the minor change in temperature is accounted for in our 
calculations in order to remain as general as possible. 
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We rewrite eqn. Al.l: 

Using the condition for adiabatic expansion (dQ=O) we have 

dQ=dU+pdV=Cv-dT+pdV=O 

with Cv au 
=m*c”= - 

( 1 aT 

dT 
orp=-C,.--- 

dV 

using 

av 
c,=c”+p’ E 

t 1 P 

and inserting (A1.6a) we obtain 

s-c 
V 

which we can rewrite as 

cP cP -- 1 
dV &--l 

.vr----- 
0 %J 

dV .- 
v, 

Inserting (A1.9) into (Al.la) and using (A1.2) we obtain 

(Al-la) 

(Al .6) 

(Al .7) 

(Al .6a) 

(Al .8) 

(Al .9) 

which, with the help of eqns. (A1.2) and (Al .3) can be rewritten to yield 

cP dv 
dp= K-+V cv 0 

c,AV NAV 
or, Ap=K.-.----_K.- 

CV VO VO 

(A1.10) 

(Al.lOa) 

(Al-lob) 
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The quantity f is called the adiabatic modulus of volume elasticity. Its use makes (Al. lob) 
formally equal to the first term of (Al-la) but including the effect of the second term. cy can 
be calculated from cP, which is usually known, by using eqns. (A1.8) and eqn. (A1.3): 

5 =c,+p.s 
P 

with p being the density of the material. 

AV in eqn. (Al-lob) is obtained as a result of all mass displacements into and out of the grid 
volume considered and is treated as a “virtual” expansion because it is used to compute the 
resulting change in pressure. 

General case of “slow” heating 

In order to be able to treat also the more general case, where some expansion can take place 
during the power deposition period (“long pulse source”) we finally consider the non- 
isochoric case. 

Describing the process as a combination of isochoric heating and subsequent adiabatic 
compression, we can use 

and eqn. (A1.3) to justify the relation 

1 dV 1 AV 
dr’c.7 or AT=-.- 

0 a, vo 

(Al.ll) 

(A1.12) 

which, together with AQ = C, AT+ pAV (eqn. A1.6) yields, for the thermal contribution to the 
change in volume: 

AV,= C 
AQ 

i+P+P 

(A1.13) 

The first term in the denominator is of the order od 10” N/m2 for the case of liquid metals and 
hence at least 1000 times greater than any value of p to be considered. Neglecting p and using 
eqn. (A1.3), eqn. (A1.13) can be transformed to yield eqn. (A1.4), which shows that the 
general case is physically not much different from the isochoric case but the amount of 
energy is deposited over much longer time periods which, at any point in time, makes AQ and 
the resulting pressure much smaller. 
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A2 The modulus of volume elasticity for a liquid gas-mixture 

Assuming we have a mixture of a liquid matrix of volume V, with finely distributed gas 
bubbles of volume VP we write: 

v,=v,+vg W-W, dV, = dV, . dV, (A2.lb) 

From the definition V of the modulus of volume elasticity K for the liquid we have 

(A2.2) 

In order to determine the second term on the right hand side of eqn. (A2.lb) one needs to 
know whether the compression of the gas is adiabatic (due to the short time involved) or 
isothermal (due to the fact that the bubbles are very small and their surface is large). The 
general formula 

P * VB” = PO * v&i:0 (A2.3) 

holds for the general case of a polytropic compression with 

1lnlK W.4) 

(n = 1 for purely isothermal and n = K for purely adiabatic compression). 

From (A2.3) we have 

VB = pi” . v*,. . p-l’n 

and 

dV8 ’ $’ . Vg,o . p-b+l’lndp =--. 
n 

Inserting (A2.2) and A2.6) into (A2.lb) we obtain 

which we formally rewrite as 

dV, = -v,,. . $dp in analogy to (A2.2). Defining the volume ratio 
w 

V 
=A!& V 

& Vm.0 

g.0 

Vi.0 + V&O 

w.3 

W.6) 

W.7) 

64W 

and taking into account that we are only interested in cases where Vg,O cc VLO (up to a few 
percent), we can set 
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K t 

1 1 1 

_ - 

m K+;. p 

lln . 

E 

. 

0 
p+l)‘” 1 1 (f42.9) 

The magnitude of K, is of the order of 10” N/m2 and hence Km is stronlgy affected by E. Since 
we don’t know exactly what value of n to use, we remain on the safe side (less reduction of 
K, relative to K!, if we use the case of isothermal compression (n=l), although for very short 
pulses adiabatic compression of the gas bubbles seems more likely. 

For He-gas we have K = 1.63 and hence 

1 In11.63 

2 2 n+l/n 2 1.61 

(A2.1Oa) 

(A2.10b) 
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